118 research outputs found

    Quantum Information on Spectral Sets

    Full text link
    For convex optimization problems Bregman divergences appear as regret functions. Such regret functions can be defined on any convex set but if a sufficiency condition is added the regret function must be proportional to information divergence and the convex set must be spectral. Spectral set are sets where different orthogonal decompositions of a state into pure states have unique mixing coefficients. Only on such spectral sets it is possible to define well behaved information theoretic quantities like entropy and divergence. It is only possible to perform measurements in a reversible way if the state space is spectral. The most important spectral sets can be represented as positive elements of Jordan algebras with trace 1. This means that Jordan algebras provide a natural framework for studying quantum information. We compare information theory on Hilbert spaces with information theory in more general Jordan algebras, and conclude that much of the formalism is unchanged but also identify some important differences.Comment: 13 pages, 2 figures. arXiv admin note: text overlap with arXiv:1701.0101

    Lattices with non-Shannon Inequalities

    Full text link
    We study the existence or absence of non-Shannon inequalities for variables that are related by functional dependencies. Although the power-set on four variables is the smallest Boolean lattice with non-Shannon inequalities there exist lattices with many more variables without non-Shannon inequalities. We search for conditions that ensures that no non-Shannon inequalities exist. It is demonstrated that 3-dimensional distributive lattices cannot have non-Shannon inequalities and planar modular lattices cannot have non-Shannon inequalities. The existence of non-Shannon inequalities is related to the question of whether a lattice is isomorphic to a lattice of subgroups of a group.Comment: Ten pages. Submitted to ISIT 2015. The appendix will not appear in the proceeding

    Maximum Entropy and Sufficiency

    Full text link
    The notion of Bregman divergence and sufficiency will be defined on general convex state spaces. It is demonstrated that only spectral sets can have a Bregman divergence that satisfies a sufficiency condition. Positive elements with trace 1 in a Jordan algebra are examples of spectral sets, and the most important example is the set of density matrices with complex entries. It is conjectured that information theoretic considerations lead directly to the notion of Jordan algebra under some regularity conditions

    R\'enyi Divergence and Kullback-Leibler Divergence

    Full text link
    R\'enyi divergence is related to R\'enyi entropy much like Kullback-Leibler divergence is related to Shannon's entropy, and comes up in many settings. It was introduced by R\'enyi as a measure of information that satisfies almost the same axioms as Kullback-Leibler divergence, and depends on a parameter that is called its order. In particular, the R\'enyi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of R\'enyi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of σ\sigma-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.Comment: To appear in IEEE Transactions on Information Theor
    corecore